seq2seq

Data Skeptic - Un pódcast de Kyle Polich - Lunes

Categorías:

A sequence to sequence (or seq2seq) model is neural architecture used for translation (and other tasks) which consists of an encoder and a decoder. The encoder/decoder architecture has obvious promise for machine translation, and has been successfully applied this way. Encoding an input to a small number of hidden nodes which can effectively be decoded to a matching string requires machine learning to learn an efficient representation of the essence of the strings. In addition to translation, seq2seq models have been used in a number of other NLP tasks such as summarization and image captioning. Related Links tf-seq2seq Describing Multimedia Content using Attention-based Encoder--Decoder Networks Show and Tell: A Neural Image Caption Generator Attend to You: Personalized Image Captioning with Context Sequence Memory Networks

Visit the podcast's native language site