The Mathematical Foundations of Intelligence [Professor Yi Ma]
Machine Learning Street Talk (MLST) - Un pódcast de Machine Learning Street Talk (MLST)
Categorías:
What if everything we think we know about AI understanding is wrong? Is compression the key to intelligence? Or is there something more—a leap from memorization to true abstraction? In this fascinating conversation, we sit down with **Professor Yi Ma**—world-renowned expert in deep learning, IEEE/ACM Fellow, and author of the groundbreaking new book *Learning Deep Representations of Data Distributions*. Professor Ma challenges our assumptions about what large language models actually do, reveals why 3D reconstruction isn't the same as understanding, and presents a unified mathematical theory of intelligence built on just two principles: **parsimony** and **self-consistency**.**SPONSOR MESSAGES START**—Prolific - Quality data. From real people. For faster breakthroughs.https://www.prolific.com/?utm_source=mlst—cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economyHiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlstSubmit investment deck: https://cyber.fund/contact?utm_source=mlst—**END**Key Insights:**LLMs Don't Understand—They Memorize**Language models process text (*already* compressed human knowledge) using the same mechanism we use to learn from raw data. **The Illusion of 3D Vision**Sora and NeRFs etc that can reconstruct 3D scenes still fail miserably at basic spatial reasoning**"All Roads Lead to Rome"**Why adding noise is *necessary* for discovering structure.**Why Gradient Descent Actually Works**Natural optimization landscapes are surprisingly smooth—a "blessing of dimensionality" **Transformers from First Principles**Transformer architectures can be mathematically derived from compression principles—INTERACTIVE AI TRANSCRIPT PLAYER w/REFS (ReScript):https://app.rescript.info/public/share/Z-dMPiUhXaeMEcdeU6Bz84GOVsvdcfxU_8Ptu6CTKMQAbout Professor Yi MaYi Ma is the inaugural director of the School of Computing and Data Science at Hong Kong University and a visiting professor at UC Berkeley. https://people.eecs.berkeley.edu/~yima/https://scholar.google.com/citations?user=XqLiBQMAAAAJ&hl=en https://x.com/YiMaTweets **Slides from this conversation:**https://www.dropbox.com/scl/fi/sbhbyievw7idup8j06mlr/slides.pdf?rlkey=7ptovemezo8bj8tkhfi393fh9&dl=0**Related Talks by Professor Ma:**- Pursuing the Nature of Intelligence (ICLR): https://www.youtube.com/watch?v=LT-F0xSNSjo- Earlier talk at Berkeley: https://www.youtube.com/watch?v=TihaCUjyRLMTIMESTAMPS:00:00:00 Introduction00:02:08 The First Principles Book & Research Vision00:05:21 Two Pillars: Parsimony & Consistency00:09:50 Evolution vs. Learning: The Compression Mechanism00:14:36 LLMs: Memorization Masquerading as Understanding00:19:55 The Leap to Abstraction: Empirical vs. Scientific00:27:30 Platonism, Deduction & The ARC Challenge00:35:57 Specialization & The Cybernetic Legacy00:41:23 Deriving Maximum Rate Reduction00:48:21 The Illusion of 3D Understanding: Sora & NeRF00:54:26 All Roads Lead to Rome: The Role of Noise00:59:56 All Roads Lead to Rome: The Role of Noise01:00:14 Benign Non-Convexity: Why Optimization Works01:06:35 Double Descent & The Myth of Overfitting01:14:26 Self-Consistency: Closed-Loop Learning01:21:03 Deriving Transformers from First Principles01:30:11 Verification & The Kevin Murphy Question01:34:11 CRATE vs. ViT: White-Box AI & ConclusionREFERENCES:Book:[00:03:04] Learning Deep Representations of Data Distributionshttps://ma-lab-berkeley.github.io/deep-representation-learning-book/[00:18:38] A Brief History of Intelligencehttps://www.amazon.co.uk/BRIEF-HISTORY-INTELLIGEN-HB-Evolution/dp/0008560099[00:38:14] Cyberneticshttps://mitpress.mit.edu/9780262730099/cybernetics/Book (Yi Ma):[00:03:14] 3-D Vision bookhttps://link.springer.com/book/10.1007/978-0-387-21779-6<TRUNC> refs on ReScript link/YT
