Best AI papers explained
Un pódcast de Enoch H. Kang
441 Episodo
-
Converging Predictions with Shared Information
Publicado: 11/5/2025 -
Test-Time Alignment Via Hypothesis Reweighting
Publicado: 11/5/2025 -
Rethinking Diverse Human Preference Learning through Principal Component Analysis
Publicado: 11/5/2025 -
Active Statistical Inference
Publicado: 10/5/2025 -
Data Mixture Optimization: A Multi-fidelity Multi-scale Bayesian Framework
Publicado: 10/5/2025 -
AI-Powered Bayesian Inference
Publicado: 10/5/2025 -
Can Unconfident LLM Annotations Be Used for Confident Conclusions?
Publicado: 9/5/2025 -
Predictions as Surrogates: Revisiting Surrogate Outcomes in the Age of AI
Publicado: 9/5/2025 -
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Publicado: 9/5/2025 -
How to Evaluate Reward Models for RLHF
Publicado: 9/5/2025 -
LLMs as Judges: Survey of Evaluation Methods
Publicado: 9/5/2025 -
The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
Publicado: 9/5/2025 -
Limits to scalable evaluation at the frontier: LLM as Judge won’t beat twice the data
Publicado: 9/5/2025 -
Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation
Publicado: 9/5/2025 -
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
Publicado: 9/5/2025 -
Prediction-Powered Statistical Inference Framework
Publicado: 9/5/2025 -
Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL
Publicado: 9/5/2025 -
RM-R1: Reward Modeling as Reasoning
Publicado: 9/5/2025 -
Reexamining the Aleatoric and Epistemic Uncertainty Dichotomy
Publicado: 8/5/2025 -
Decoding Claude Code: Terminal Agent for Developers
Publicado: 7/5/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.