Best AI papers explained
Un pódcast de Enoch H. Kang
442 Episodo
-
Reward Models Evaluate Consistency, Not Causality
Publicado: 28/4/2025 -
Causal Rewards for Large Language Model Alignment
Publicado: 28/4/2025 -
Sycophancy to subterfuge: Investigating reward-tampering in large language models
Publicado: 28/4/2025 -
Bidirectional AI Alignment
Publicado: 28/4/2025 -
Why Do Multi-Agent LLM Systems Fail?
Publicado: 27/4/2025 -
LLMs as Greedy Agents: RL Fine-tuning for Decision-Making
Publicado: 27/4/2025 -
LLM Feedback Loops and the Lock-in Hypothesis
Publicado: 27/4/2025 -
Representational Alignment Drives Effective Teaching and Learning
Publicado: 27/4/2025 -
Adaptive Parallel Reasoning with Language Models
Publicado: 27/4/2025 -
AI: Rewiring the Flow of Ideas and Human Knowledge
Publicado: 27/4/2025 -
Learning and Equilibrium with Ranking Feedback
Publicado: 27/4/2025 -
Designing Human-AI Collaboration: A Sufficient-Statistic Approach
Publicado: 27/4/2025 -
GOAT: Generative Adversarial Training for Human-AI Coordination
Publicado: 27/4/2025 -
π0.5: Generalization in Robotic Manipulation via Diverse Data
Publicado: 27/4/2025 -
NoWag: Unified Compression for Large Language Models
Publicado: 26/4/2025 -
Optimal Tool Calls in Language Model Reasoning
Publicado: 26/4/2025 -
Data Selection for Empirical Risk Minimization
Publicado: 26/4/2025 -
LoRe: Low-Rank Reward Modeling for Personalized LLMs
Publicado: 26/4/2025 -
ParaPO: Reducing Language Model Verbatim Reproduction
Publicado: 26/4/2025 -
Test-Time RL: Self-Evolving LLMs via Majority Voting Rewards
Publicado: 25/4/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.