Best AI papers explained
Un pódcast de Enoch H. Kang
437 Episodo
-
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
Publicado: 11/6/2025 -
Agentic Supernet for Multi-agent Architecture Search
Publicado: 11/6/2025 -
Sample Complexity and Representation Ability of Test-time Scaling Paradigms
Publicado: 11/6/2025 -
Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators
Publicado: 10/6/2025 -
LLMs Get Lost In Multi-Turn Conversation
Publicado: 9/6/2025 -
PromptPex: Automatic Test Generation for Prompts
Publicado: 8/6/2025 -
General Agents Need World Models
Publicado: 8/6/2025 -
The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
Publicado: 7/6/2025 -
Decisions With Algorithms
Publicado: 7/6/2025 -
Adapting, fast and slow: Causal Approach to Few-Shot Sequence Learning
Publicado: 6/6/2025 -
Conformal Arbitrage for LLM Objective Balancing
Publicado: 6/6/2025 -
Simulation-Based Inference for Adaptive Experiments
Publicado: 6/6/2025 -
Agents as Tool-Use Decision-Makers
Publicado: 6/6/2025 -
Quantitative Judges for Large Language Models
Publicado: 6/6/2025 -
Self-Challenging Language Model Agents
Publicado: 6/6/2025 -
Learning to Explore: An In-Context Learning Approach for Pure Exploration
Publicado: 6/6/2025 -
How Bidirectionality Helps Language Models Learn Better via Dynamic Bottleneck Estimation
Publicado: 6/6/2025 -
A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models
Publicado: 5/6/2025 -
Simplifying Bayesian Optimization Via In-Context Direct Optimum Sampling
Publicado: 5/6/2025 -
Bayesian Teaching Enables Probabilistic Reasoning in Large Language Models
Publicado: 5/6/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.