Best AI papers explained
Un pódcast de Enoch H. Kang
518 Episodo
-  A Collectivist, Economic Perspective on AIPublicado: 14/7/2025
-  Textual Bayes: Quantifying Uncertainty in LLM-Based SystemsPublicado: 12/7/2025
-  The Winner's Curse in Data-Driven DecisionsPublicado: 11/7/2025
-  SPIRAL: Self-Play for Reasoning Through Zero-Sum GamesPublicado: 11/7/2025
-  Beyond Statistical Learning: Exact Learning Is Essential for General IntelligencePublicado: 11/7/2025
-  Aligning Learning and Endogenous Decision-MakingPublicado: 11/7/2025
-  Reliable Statistical Inference with Synthetic Data from Large Language ModelsPublicado: 11/7/2025
-  Multi-Turn Reinforcement Learning from Human Preference FeedbackPublicado: 10/7/2025
-  Provably Learning from Language FeedbackPublicado: 9/7/2025
-  Markets with Heterogeneous Agents: Dynamics and Survival of Bayesian vs. No-Regret LearnersPublicado: 5/7/2025
-  Why Neural Network Can Discover Symbolic Structures with Gradient-based Training: An Algebraic and Geometric FoundationPublicado: 5/7/2025
-  Causal Abstraction with Lossy RepresentationsPublicado: 4/7/2025
-  The Winner's Curse in Data-Driven DecisionsPublicado: 4/7/2025
-  Embodied AI Agents: Modeling the WorldPublicado: 4/7/2025
-  Beyond Statistical Learning: Exact Learning Is Essential for General IntelligencePublicado: 4/7/2025
-  What Has a Foundation Model Found? Inductive Bias Reveals World ModelsPublicado: 4/7/2025
-  Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and BeyondPublicado: 3/7/2025
-  Learning to Explore: An In-Context Learning Approach for Pure ExplorationPublicado: 3/7/2025
-  Human-AI Matching: The Limits of Algorithmic SearchPublicado: 25/6/2025
-  Uncertainty Quantification Needs Reassessment for Large-language Model AgentsPublicado: 25/6/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
