437 Episodo

  1. Statistics for Large Language Models

    Publicado: 29/5/2025
  2. Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search

    Publicado: 29/5/2025
  3. Beyond Markovian: Reflective Exploration via Bayes-Adaptive RL for LLM Reasoning

    Publicado: 29/5/2025
  4. Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL

    Publicado: 29/5/2025
  5. Value-Guided Search for Efficient Chain-of-Thought Reasoning

    Publicado: 29/5/2025
  6. Shallow Preference Signals: Large Language model aligns even better without truncated data?

    Publicado: 29/5/2025
  7. Gaming Tool Preferences in Agentic LLMs

    Publicado: 29/5/2025
  8. Partner Modelling Emerges in Recurrent Agents (But Only When It Matters)

    Publicado: 29/5/2025
  9. LLM Populations Form Social Conventions and Collective Bias

    Publicado: 29/5/2025
  10. LLM Generated Persona is a Promise with a Catch

    Publicado: 29/5/2025
  11. Large Language Models for Digital Twin Simulation

    Publicado: 29/5/2025
  12. From RL Distillation to Autonomous LLM Agents

    Publicado: 29/5/2025
  13. Prompting, Auto-Prompting, and Human-AI Communication

    Publicado: 29/5/2025
  14. Textual Gradients for LLM Optimization

    Publicado: 29/5/2025
  15. Large Language Models as Markov Chains

    Publicado: 28/5/2025
  16. Metastable Dynamics of Chain-of-Thought Reasoning: Provable Benefits of Search, RL and Distillation

    Publicado: 28/5/2025
  17. Selective induction heads: how transformers select causal structures in context

    Publicado: 28/5/2025
  18. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains

    Publicado: 28/5/2025
  19. How Transformers Learn Causal Structure with Gradient Descent

    Publicado: 28/5/2025
  20. Planning anything with rigor: general-purpose zero-shot planning with llm-based formalized programming

    Publicado: 28/5/2025

8 / 22

Cut through the noise. We curate and break down the most important AI papers so you don’t have to.

Visit the podcast's native language site