Data Skeptic

Un pódcast de Kyle Polich - Lunes

Lunes

Categorías:

555 Episodo

  1. Interpretable AI in Healthcare

    Publicado: 15/5/2020
  2. Understanding Neural Networks

    Publicado: 8/5/2020
  3. Self-Explaining AI

    Publicado: 2/5/2020
  4. Plastic Bag Bans

    Publicado: 24/4/2020
  5. Self Driving Cars and Pedestrians

    Publicado: 18/4/2020
  6. Computer Vision is Not Perfect

    Publicado: 10/4/2020
  7. Uncertainty Representations

    Publicado: 4/4/2020
  8. AlphaGo, COVID-19 Contact Tracing and New Data Set

    Publicado: 28/3/2020
  9. Visualizing Uncertainty

    Publicado: 20/3/2020
  10. Interpretability Tooling

    Publicado: 13/3/2020
  11. Shapley Values

    Publicado: 6/3/2020
  12. Anchors as Explanations

    Publicado: 28/2/2020
  13. Mathematical Models of Ecological Systems

    Publicado: 22/2/2020
  14. Adversarial Explanations

    Publicado: 14/2/2020
  15. ObjectNet

    Publicado: 7/2/2020
  16. Visualization and Interpretability

    Publicado: 31/1/2020
  17. Interpretable One Shot Learning

    Publicado: 26/1/2020
  18. Fooling Computer Vision

    Publicado: 22/1/2020
  19. Algorithmic Fairness

    Publicado: 14/1/2020
  20. Interpretability

    Publicado: 7/1/2020

13 / 28

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.

Visit the podcast's native language site