Best AI papers explained
Un pódcast de Enoch H. Kang
440 Episodo
-
Agentic Reward Modeling_Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems
Publicado: 26/5/2025 -
Beyond Reward Hacking: Causal Rewards for Large LanguageModel Alignment
Publicado: 26/5/2025 -
Learning How Hard to Think: Input-Adaptive Allocation of LM Computation
Publicado: 26/5/2025 -
Highlighting What Matters: Promptable Embeddings for Attribute-Focused Image Retrieval
Publicado: 26/5/2025 -
UFT: Unifying Supervised and Reinforcement Fine-Tuning
Publicado: 26/5/2025 -
Understanding High-Dimensional Bayesian Optimization
Publicado: 26/5/2025 -
Inference time alignment in continuous space
Publicado: 25/5/2025 -
Efficient Test-Time Scaling via Self-Calibration
Publicado: 25/5/2025 -
Conformal Prediction via Bayesian Quadrature
Publicado: 25/5/2025 -
Predicting from Strings: Language Model Embeddings for Bayesian Optimization
Publicado: 25/5/2025 -
Self-Evolving Curriculum for LLM Reasoning
Publicado: 25/5/2025 -
Online Decision-Focused Learning in Dynamic Environments
Publicado: 25/5/2025 -
FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain
Publicado: 25/5/2025 -
Reward Shaping from Confounded Offline Data
Publicado: 25/5/2025 -
Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
Publicado: 25/5/2025 -
Understanding Best-of-N Language Model Alignment
Publicado: 25/5/2025 -
Maximizing Acquisition Functions for Bayesian Optimization - and its relation to Gradient Descent
Publicado: 24/5/2025 -
Bayesian Prompt Ensembles: Model Uncertainty Estimation for Black-Box Large Language Models
Publicado: 24/5/2025 -
Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
Publicado: 24/5/2025 -
The Parallel Knowledge Gradient Method for Batch Bayesian Optimization
Publicado: 24/5/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.