440 Episodo

  1. FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

    Publicado: 24/5/2025
  2. Automated Social Science: A Structural Causal Model-Based Approach

    Publicado: 24/5/2025
  3. Causal Interpretation of Transformer Self-Attention

    Publicado: 24/5/2025
  4. A Causal World Model Underlying Next Token Prediction: Exploring GPT in a Controlled Environment

    Publicado: 24/5/2025
  5. Trace is the Next AutoDiff: Generative Optimization with Rich Feedback, Execution Traces, and LLMs

    Publicado: 24/5/2025
  6. Adaptive Inference-Time Compute: LLMs Can Predict if They Can Do Better, Even Mid-Generation

    Publicado: 24/5/2025
  7. Prompts from Reinforcement Learning (PRL)

    Publicado: 24/5/2025
  8. Logits are All We Need to Adapt Closed Models

    Publicado: 24/5/2025
  9. Large Language Models Are (Bayesian) Latent Variable Models: Explaining and Finding Good Demonstrations for In-Context Learning

    Publicado: 23/5/2025
  10. Inference-Time Intervention: Eliciting Truthful Answers from a Language Model

    Publicado: 23/5/2025
  11. From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models

    Publicado: 23/5/2025
  12. LLM In-Context Learning as Kernel Regression

    Publicado: 23/5/2025
  13. Personalizing LLMs via Decode-Time Human Preference Optimization

    Publicado: 23/5/2025
  14. Almost Surely Safe LLM Inference-Time Alignment

    Publicado: 23/5/2025
  15. Survey of In-Context Learning Interpretation and Analysis

    Publicado: 23/5/2025
  16. From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models

    Publicado: 23/5/2025
  17. LLM In-Context Learning as Kernel Regression

    Publicado: 23/5/2025
  18. Where does In-context Learning Happen in Large Language Models?

    Publicado: 23/5/2025
  19. Auto-Differentiating Any LLM Workflow: A Farewell to Manual Prompting

    Publicado: 22/5/2025
  20. metaTextGrad: Learning to learn with language models as optimizers

    Publicado: 22/5/2025

11 / 22

Cut through the noise. We curate and break down the most important AI papers so you don’t have to.

Visit the podcast's native language site