Best AI papers explained
Un pódcast de Enoch H. Kang
436 Episodo
-
The Assimilation-Accommodation Gap in LLM Intelligence
Publicado: 10/8/2025 -
The Minimalist AI Kernel: A New Frontier in Reasoning
Publicado: 6/8/2025 -
Statistical Rigor for Interpretable AI
Publicado: 6/8/2025 -
Full-Stack Alignment: Co-Aligning AI and Institutions with Thick Models of Value
Publicado: 4/8/2025 -
A foundation model to predict and capture human cognition
Publicado: 4/8/2025 -
Generative Recommendation with Semantic IDs: A Practitioner’s Handbook
Publicado: 4/8/2025 -
Hierarchical Reasoning Model
Publicado: 4/8/2025 -
Test-time Offline Reinforcement Learning on Goal-related Experience
Publicado: 4/8/2025 -
Interpreting Chain of Thought: A Walkthrough and Discussion
Publicado: 4/8/2025 -
The wall confronting large language models
Publicado: 4/8/2025 -
COLLABLLM: LLMs From Passive to Collaborative
Publicado: 31/7/2025 -
A decade's battle on dataset bias: are we there yet?
Publicado: 29/7/2025 -
GEPA: Generative Feedback for AI System Optimization
Publicado: 29/7/2025 -
From AI-Curious to AI-First: Engineering Production AI Systems
Publicado: 28/7/2025 -
Context Engineering: Beyond Simple Prompting to LLM Architecture
Publicado: 28/7/2025 -
Agentic Misalignment: LLMs as Insider Threats
Publicado: 28/7/2025 -
Small Language Models: Future of Agentic AI
Publicado: 28/7/2025 -
Learning without training: The implicit dynamics of in-context learning
Publicado: 28/7/2025 -
Inverse Scaling in Test-Time Compute
Publicado: 28/7/2025 -
LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra
Publicado: 28/7/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.