Best AI papers explained
Un pódcast de Enoch H. Kang
437 Episodo
-
LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra
Publicado: 28/7/2025 -
Microsoft's Blueprint: AI, Quantum, and the Agentic Future
Publicado: 26/7/2025 -
Zuckerberg's AI Vision Analyzed
Publicado: 26/7/2025 -
Inside Claude: Scaling, Agency, and Interpretability
Publicado: 26/7/2025 -
Personalized language modeling from personalized human feedback
Publicado: 26/7/2025 -
Position: Empowering Time Series Reasoning with Multimodal LLMs
Publicado: 25/7/2025 -
An empirical risk minimization approach for offline inverse RL and Dynamic Discrete Choice models
Publicado: 22/7/2025 -
Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
Publicado: 22/7/2025 -
The Invisible Leash: Why RLVR May Not Escape Its Origin
Publicado: 20/7/2025 -
Language Model Personalization via Reward Factorization
Publicado: 20/7/2025 -
Train for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffusions
Publicado: 18/7/2025 -
Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
Publicado: 17/7/2025 -
Soft Best-of-n Sampling for Model Alignment
Publicado: 16/7/2025 -
On Temporal Credit Assignment and Data-Efficient Reinforcement Learning
Publicado: 15/7/2025 -
Bradley–Terry and Multi-Objective Reward Modeling Are Complementary
Publicado: 15/7/2025 -
Probing Foundation Models for World Models
Publicado: 15/7/2025 -
GenAI-Powered Statistical Inference (with Unstructured Data)
Publicado: 14/7/2025 -
Interpretable Reward Modeling with Active Concept Bottlenecks
Publicado: 14/7/2025 -
PrefillOnly: An Inference Engine for Prefill-only Workloads in Large Language Model Applications
Publicado: 14/7/2025 -
A Collectivist, Economic Perspective on AI
Publicado: 14/7/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.